
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 4Lecture 4
Topics to be coveredTopics to be covered

 Arrays
 Classes & Methods,
 Inheritance

The following variable declarations each
allocate enough storage to hold one value of
the specified data type.

int number;
double income;
char letter;

An array is an object containing a list of
elements of the same data type

INTRODUCTION TO ARRAYSINTRODUCTION TO ARRAYS

ArraysArrays
We can create an array by:

◦ Declaring an array reference variable to store the address of
an array object.

◦ Creating an array object using the new operator and assigning
the address of the array to the array reference variable.

Here is a statement that declares an array reference
variable named dailySales:

double[] dailySales;

The brackets after the key word double indicate that the
variable is an array reference variable. This variable can
hold the address of an array of values of type double.
We say the data type of dailySales is double array
reference.

The second statement of the segment below
creates an array object that can store seven
values of type double and assigns the address
of the array object to the reference variable
named “dailySales”:

double[] dailySales;

dailySales = new double[7];

 The operand of the new operator is the data type
of the individual array elements and a bracketed
value that is the array size declarator. The array
size declarator specifies the number of elements
in the array.

 It is possible to declare an array reference variable
and create the array object it references in a single
statement.

 The statement below creates a reference variable
named dailySales and an array object that can
store seven values of type double as illustrated
below:
Here is an example:

double[] dailySales = new double[7];

addressdailySales

1st value 2nd value 3rd value 4th value 5th value 6th value 7th value

Accessing Array ElementsAccessing Array Elements
 We can access the array elements and use them

like individual variables.
 Each array element has a subscript. This subscript

can be used to select/pinpoint a particular element
in the array.

 Array subscripts are offsets from the first array
element.

 The first array element is at offset/subscript 0, the
second array element is at offset/subscript 1, and
so on.

 The subscript of the last element in the array is one
less than the number of elements in the array.

final int DAYS = 7;

double[] dailySales = new double[DAYS];

dailySales[0], pronounced dailySales sub zero, is the first
element of the array.
dailySales[1], pronounced dailySales sub one, is the second
element of the array.
dailySales[6], pronounced dailySales sub six, is the last
element of the array.

0 0 0 0 0 0 0
[0] [1] [2] [3] [4] [5] [6]

addressdailySales

Subscripts

 Array subscripts begin with zero and go up to n -
1, where n is the number of elements in the
array.

final int DAYS = 7;

double[] dailySales = new double[DAYS];

Typically, we use a loop to cycle through
all the subscripts in the array to process
the data in the array.

0 0 0 0 0 0 0
[0] [1] [2] [3] [4] [5] [6]

addressdailySales

Subscripts

Array InitializationArray Initialization
 Like other variables, you may give array elements an initial value

when creating the array.

Example:
The statement below declares a reference variable named
temperatures, creates an array object with room for exactly tens
values of type double, and initializes the array to contain the values
specified in the initialization list.

double[] temperatures = {98.6, 112.3, 99.5, 96, 96.7, 32, 39, 18.1, 111.5};

 By default, Java initializes the array elements of a numeric array
with the value 0.

int[] attendance = new int[5] ;

Array LengthArray Length
 Each array object has an attribute/field named

length. This attribute contains the number of
elements in the array.

For example, in the segment below the variable
named size is assigned the value 5, since the array
referenced by values has 5 elements.

int size;
int[] values = {13, 21, 201, 3, 43};

size = values.length;

Notice, length is an
attribute of an array not

a method - hence no
parentheses.

class definitionclass definition
class classname {

field declarations
{ initialization code }
Constructors
Methods

}

InheritanceInheritance
 On the surface, inheritance is a code

re-use issue.
◦ we can extend code that is already written

in a manageable manner.
 Inheritance is more
◦ it supports polymorphism at the language

level

InheritanceInheritance
 The derivation of one class from

another class is called Inheritance.
 Types of inheritance

15

InheritanceInheritance
 One object type is defined as being a

special version of some other object
type.
◦ a specialization.

 The more general class is called:
◦ base class, super class, parent class.

 The more specific class is called:
◦ derived class, subclass, child class.

 A class that is inherited is called a superclass.
 The class that does the inheriting is called as

subclass.
 In above figure all class A is superclass.
 A subclass inherits all instance variables and

methods from its superclass and also has its
own variables and methods.

 One can inherit the class using keyword
extends.

 Syntax :
Class subclass-name extends superclass-name
{

// body of class.
}

 In java, a class has only one super
class.

 Java does not support Multiple
Inheritance.

 One can create a hierarchy of
inheritance in which a subclass
becomes a superclass of another
subclass. However, no class can be a
superclass of itself.

ExampleExample
class A //superclass
{ int num1; //member of superclass

int num2; //member of superclass
void setVal(int no1, int no2) //method of superclass
{ num1 = no1;

num2 = no2;
}

}
class B extends A //subclass B
{ int multi; //member of subclass

void mul() //method of subclass
{ multi = num1*num2; //accessing member of superclass from subclass
}

}
class inhe2
{ public static void main(String args[])

{ B subob = new B();
subob.setVal(5,6); //calling superclass method through subclass object
subob.mul();
System.out.println("Multiplication is " + subob.multi);

}
}

Output : Multiplication is 30

Note Note
 Private members of superclass are not

accessible in sub class
 Superclass is also called parent class

or base class,
 subclass is also called child class or

derived class.

